
SUPERVISOR and LOG contexts HELP

Relative to SUPERVISOR version 42.420.75

MAGUS version 42.420.12

This HELP file is intended to provide Metalogic SUPERVISOR users with
current and useful information on the features and capabilities of the new
LOG context implementation. Please note that the METANOTES data files
for SUPERVISOR, OPAL and OPAL/GSTABLEGEN, available on your
usual Metalogic release tape, contain useful and late-breaking information
which may not yet be included in this HELP document.

Introduction

The LOG contexts implementation allows the real-time capture of various
types of log records by Supervisor, as they are written to the SUMLOG file
by the MCP. Supervisor has various new OPAL program contexts which
specifically allow access to such log record types and in particular, OPAL
SITUations can be used to provide powerful and flexible filtering facilities.
Associated with these filters, OPAL ODTSequences can be used to automatic
operator responses and/or generate tailored reports.

Alternatively, using the EVAL command, Supervisor can emulate
LOGANALYZER to scan single or multiple SUMLOGs, again using OPAL
SITUations for filtering purposes and ODTSequences for reporting or taking
operator action. This feature is very flexible and Supervisor's log reading
capabilities are significantly faster than most other utilities.

The LOG contexts currently available allow retrieval of information from the
following log record types. Each of these contexts has its own unique
identifier which is used in the program definition. SUPERVISOR uses an
Unisys provided library entrypoint in the MCP, called
REPORT_LOG_ENTRIES, to provide these facilities.

File open and close (FILEOPEN, FILECLOSE), programmatic database
open and close (DATABASE), security violation entries (SECURITY), MCS
security violation entries (MCSSECURITY), print request maintenance
(LOGPR), log identity records (EI), station log-on and log-off (LOGON,
LOGOFF), end-of-job and end-of-task log entries (LOGEOJ) and beginning-
of-job and beginning-of-task log entries (LOGBOJ). Lastly a generic
program type called LOG, allows access to ALL SUMLOG record types.
Some of these contexts are allowed optional subcontext assignments which

provide powerful filtering to restrict the types of records returned to
Supervisor by the MCP. The full list of currently available Log contexts are
shown below:

Contexts Optional subcontexts

LOG

FILEOPEN

FILECLOSE

LOGPS

SECURITY

DATABASE

LOGBOJ

LOGEOJ

LOGON

LOGOFF

MCSSECURITY

MSG

Major type and Minor type list

None

CLOSE, PLI

STARTED, COMPLETION,PRINTED, FINISHED

None

OPEN, CLOSE

BOJ, BOT

EOJ, EOT

None

None

None

None

Any Major type with multiple Minor Although not all SUMLOG record types
are covered by a Supervisor LOG types context equivalent, it is Metalogic's
intention that more types will be added in the future according to demand.
However, Supervisor does have the CLOSE, PLIcapability to examine ALL
records types using the basic LOG context type. COMPLETION, CREATED

In this case, additional filtering controls can be provided in the
SITUation PRINTED, STARTEDdefinition to help minimise the overhead of
tracking every record type.

Please note that Supervisor's capability to capture LOG records is
independent of the systems LOGGING options. It does not matter if the
LOGGING command has disabled the recording of BOJ and BOT records to
the SUMLOG; Supervisor will still receive log event information from the
MCP for any active WHENs using a LOGBOJ context

The previous statement does not apply to the EVAL command. If the
LOGGING command has disabled both BOJ and BOT records, then an EVAL
of a LOGBOJ SITUation will not find any entries. This is because
Supervisor must read one or more SUMLOGs to search for BOJ information
but if the log records are not present then there is little that can be achieved.

Please note that, unlike the Unisys LOGANALYZER product, Supervisor
EVALs that read multiple Sumlog files will return any entries found in
reverse chronological order.

Further, since the MESSAGE context is now a LOG context, has been
included for completeness because when used with the EVAL command,
Supervisor will scan the required SUMLOGs. Previously, the MSG context
was only available for the event-based WHENs and not EVALs.

Each of the above contexts have their own attribute subsets making it
practical to write simple SITUations to track, filter, report and action many
varieties of system activities. Where possible, OPAL attributes map
directly onto fields in the relevant log entry with similar and meaningful
names. For more details on the attributes associated within each context,
the TT HELP ATT =:<context> command from an ODT or Supervisor
window can be used in conjunction with provided references to the Unisys
System Log Programming Reference manual.

For example, to see all attributes associated with the SECURITY context,
try TT HELP ATTR =:SECURITY. To see information about individual
attributes, use TT HELP ATTR <attribute>.

All of these new contexts can be used in real-time (as WHENs) or to scan the
SUMLOG (using the EVAL command). Please see the sections concerning
changes to the Supervisor EVAL and WHEN commands for more information.

SECURITY context

The SECURITY context corresponds to log entries detected by the LOG
SECURITY command whose type are Major type 6 (Miscellaneous), Minor
type 4 (Security Violation entry). Using the appropriate attributes, OPAL
programs are capable of handling system security violations, as they occur,
and taking action or reporting transgressions immediately.

A typical SITUation to capture an unauthorised attempt to open a PRIVATE
file:

DEFINE + SITUATION PRIVATE_FILE(SECURITY):
 VIOLATIONCODE EQL PRIVATEFILE

DEFINE + ODTSEQUENCE PRIVATE_FILE(SECURITY):
 RECORD[5]("User ",USERCODE,,"(",MIXNUMBER,,") ",,
 " attempted open of PRIVATE file");
 RECORD[5]("Filename is: ",,VIOLATIONNAME);

WHEN PRIVATE_FILE DO PRIVATE_FILE

Example output:

STIRLING1 11:21:00: User META (4567) attempted open of private file
STIRLING1 11:21:00: Filename is (FLEX)VERY/PRIVATE/FILE ON PACK

Each line of output is prefixed by the originating hostname and time-of-day.

In the above example, the SITUation is only looking for a specific type of
security violation using the VIOLATIONCODE attribute. In this case, the
target is any PRIVATEFILE violation, which is an internal OPAL mnemonic
value for this security code. The other codes can be seen using the command

TT HELP ATTR VIOLATIONCODE

Note that MIXNUMBER is not actually a SECURITY context attribute; it is
a synonym for LOGMIXO which actually belongs to the universal LOG
context. All attributes that are members of the LOG context may be used in
any of the other log contexts regardless of scope.

FILEOPEN and FILECLOSE contexts

The FILEOPEN and FILECLOSE contexts allow retrieval of programmatic
file open (Major type 1 and Minor type 3) and file close (Major type 1 and
Minor type 4) log records. Sometimes, it is useful to know when a new file
has just been created on the system, e,g. for file transfer purposes,

There have always been some limitations in file log records; in particular,
the USERCODE and ACCESSCODE of the task opening or closing the file is
not logged. If using the EVAL command, then Supervisor will also have this
limitation but this is not the case for OPAL programs driven by the WHEN
command. Using the OPAL VIA intrinsic, any information about the acting
job or task can be easily retrieved form the current mix using the
LOGMIXNO attribute, as if the program was actually a MX context. An
example of this capability is shown below. Remember that you can only do
this in a real-time WHEN environment, whilst the job or task is still active.

DEFINE + SITUATION LOG_OPEN(FILEOPEN):
 KIND NEQ PORT AND INTNAME="TAPELOG"

DEFINE + ODTSEQUENCE LOG_OPEN(FILEOPEN):
 RECORD[9]("OPEN",,LOGJOBNO,"/", LOGMIXNO,, VIA(LOGMIXNO:#(NAME
 ,,"(",USER,")")));
 RECORD[9](" " 9,INTNAME,"=",TITLE
 ,IF FAMILYNAME NEQ "" THEN #(" ON ",FAMILYNAME) ELSE "");
 RECORD[9](" " 9,"FILE SIZE ",
 FILESIZE,,"SECTORS");

WHEN LOG_OPEN DO LOG_OPEN

Example output:

STIRLING1 14:22:06 OPEN 5678/5679 *SYSTEM/TESTER 1457
STIRLING1 14:22:06 INTNAME=TESTFILE ON DISK
STIRLING1 14:22:06 FILE SIZE 3024 SECTORS

A similar example of shown below for detecting a PORT file open. Note that
many of the attributes for a port file open are not applicable for all open
records. For example, the YOURUSERCODE and YOURHOSTNAME port-
only attributes will always return null strings if used to provide information
about a disk file open. In the example below, a DISPlay program is being to
report formatted information back to the originating station or to printer.

DEFINE + SITUATION LOG_PORTOPEN(FILEOPEN):
 KIND =PORT

DEFINE + DISPLAY LOG_PORTOPEN(FILEOPEN):
 TIME(LOGTIME),,"OPEN",,LOGJOBNO,"/", LOGMIXNO,,VIA(LOGMIXNO:NAME),/,
 " " 9,"EXT NAME ",TITLE,/,
 " " 9,"INT NAME",,INTNAME,/,

 " " 9,"FAMILY NAME:",FAMILYNAME,/,
 " " 9,"FILE ACCESS RULE =",ACCESSRULE,,
 IF ACTOR_STACKNO=DECLARER_STACKNO THEN
 #("(ACTOR = DECLARER)",/,
 " " 9,"STACK ",HEXSTRING(ACTOR_STACKNO),,"JOB ",ACTOR_JOBNO,,
 "TASK ",ACTOR_TASKNO)
 ELSE
 #(/,
 " " 9,"(ACTOR = STACK ",HEXSTRING (ACTOR_STACKNO),,"JOB "
 ,ACTOR_JOBNO,,"TASK ",ACTOR_TASKNO,")",/,
 " " 9,"DECLARER = STACK ",HEXSTRING (DECLARER_STACKNO),,
 "JOB ",DECLARER_JOBNO,,"TASK ", ACTOR_TASKNO),/,
 " " 9,"YOURHOSTNAME: ",YOURHOSTNAME,,"MYPABN0 = ",MYPORTADDRESS,/,
 " " 9,"YOURUSERCODE: ",YOURUSERCODE,,"MYSABN0 = ",MYSUBPORTADDRESS,/,
 " " 9,"YOURNAME : ",YOURNAME,, "SUBFILE INDEX ",SUBFILEINX,/,
 " " 9,"SERVICE : ",SERVICE,,"PROVIDERGROUP: ",PROVIDERGROUP,/,
 " " 9,"PROVIDER SELECTED: ",PROVIDER,/,
 " " 9,"TIMELIMIT : ",CONNECTTIMELIMIT,,"INIT PRIMATIVE ",
 DROP(#(INITPRIMATIVE),5),/,
 " " 9,"RESPONSE TYPE : ",RESPOND,,"USAGE ",MYUSE

Example output might appear as follows on a Supervisor window or
remotespo:

15:53:48 OPEN 877/1106 *METALOGIC/SUPERVISOR/HOTLINE ON REST
 EXT NAME RECORDERHOTLINE
 INT NAME HOTLINE
 FAMILY NAME:
 FILE ACCESS RULE =DECLARER (ACTOR = DECLARER)
 STACK 2E6 JOB 877 TASK 1106
 YOURHOSTNAME: STIRLING2 MYPABN0 = 131
 YOURUSERCODE: MYSABN0 = 126
 YOURNAME : RECORDER SUBFILE INDEX 1
 SERVICE: : BNANATIVESERVICE
 PROVIDERGROUP :
 PROVIDER SELECTED: BNAV
 TIMELIMIT : 0 INIT PRIMATIVE OPEN
 RESPONSE TYPE : NOTINVOKED USAGE UNKNOWN (3)

The FILECLOSE context is indeed similar to FILEOPEN but the subset of
attributes are slightly different since the format of these log records are not
identical. For example, the CLOSETYPE attribute is only valid for
FILECLOSE and OPENERROR is only applicable for FILEOPEN.

FILECLOSE also has two subcontexts called PLI and CLOSE and a
SITUation definition without a subcontext means that Supervisor will
capture event information about both. The PLI subcontext is actually a
Major Type 1, Minor Type 10 log entry and contains usage information for
open files if interval logging has been requested by using the PLI (Periodic
Logging Interval) system command. The FILE option in LOGANALYZER
can be used to obtain a list of these entries, if present, as well as the usual
open and close file entries. The format and contents of this log entry are
almost identical to those of the Major Type 1, Minor Type 6 (File Close) with
some minor differences.

The PLI subcontext is useful for tracking file statistical information over
time for applications that keep files open over long periods of time.

In the following LOG_CLOSE programs, RECORD[6] is used to send
information out to an alert program via the RECORDER/HOTLINE
interface.

DEFINE + SITUATION LOG_CLOSE(FILECLOSE=CLOSE):
 TRUE

DEFINE + ODTSEQUENCE LOG_CLOSE(FILECLOSE):
 RECORD[6]("CLOSE",,LOGJOBNO,"/", LOGMIXNO,,VIA(LOGMIXNO:#(NAME
 ,,"(",USER,")")));
 RECORD[6](" " 9,INTNAME,"=",TITLE
 ,IF FAMILYNAME NEQ "" THEN #(" ON ",FAMILYNAME) ELSE "");
 RECORD[6](" " 9,"PHYSICAL(READS=",READS,,"WRITES=",WRITES,")");
 RECORD[6](" " 9,"PERM AREASIZE ",AREASIZE," SECTORS, FILE SIZE ",
 FILESIZE,,"SECTORS");

WHEN LOG_CLOSE DO LOG_CLOSE

In the LOG_CLOSE ODTSequence, the LOGMIXNO attribute has been used
inside the VIA function allowing the retrieval of the task usercode and
name. CLOSE records do not provide this information but VIA can be used
to dynamically "fetch" information from the MX context using the
mixnumber of the task responsible for the creation of this record.

LOGON and LOGOFF contexts

The LOGON (Major type 4, Minor type 1) and LOGOFF (major type 4, Minor
type 2) contexts allow the tracking of MCS session log-on and log-off entries.
Typically, all MCSes, such as COMS and CANDE, create these records
whenever an individual user initiates or terminates a "session". Indeed,
Supervisor will create its own log-on and log-off records for WHENs, DOs
and AFTERs subject to the settings of his MONITORING and
LOGMINIMAL internal options.

The following example shows some OPALs that capture all session log-off
session records and, in this case, send messages to an external alert
program, via the RECORD [8] construct.

DEFINE + SITUATION LOG_LOGOFF(LOGOFF):
 TRUE

DEFINE + ODTSEQUENCE LOG_LOGOFF(LOGOFF):
 RECORD[8]("LOGOFF",,LOGMIXNO,,TERMINATION,,"ORIGINATING LSN ",LSN);
 RECORD[8](" " 9,"USERCODE ",USERCODE);
 IF CHARGECODE NEQ EMPTY THEN
 RECORD[8](" " 9,"CHARGECODE ",CHARGECODE);
 IF ACCESSCODE NEQ EMPTY THEN
 RECORD[8](" "9,"ACCESSCODE ",ACCESSCODE);
 RECORD[8](" " 9,"ELAPSED TIME: ",TIME(ELAPSED));

Similarly, the following DEFINEs can be used to capture MCS log-on
records; in this case a RECORD [7] statement is used to send information
out to a RECORDER/HOTLINE alert program. This time, however, we are
only interested in a log-on records for the usercode META and accesscode of
TEST using a simple condition in the SITUation.

DEFINE + SITUATION LOG_LOGON(LOGON):
 USERCODE = "META" AND ACCESSCODE ="TEST"

DEFINE + ODTSEQUENCE LOG_LOGON(LOGON):
 RECORD[7]("LOGON",,LOGMIXNO,,CLASS,,"ORIGINATING LSN ",LSN);
 RECORD[7](" " 9,"USERCODE ",USERCODE," ACCESS ",ACCESSCODE);
 IF CHARGECODE NEQ EMPTY THEN
 RECORD[7](" " 9,"CHARGECODE ",CHARGECODE);

This sort of filtering is very powerful, allowing the construction of simple
rules to pinpoint only those log records that need to be recorded.

MCSSECURITY context

The MCSSECURITY context (Major type 4, Minor type 6) is similar to the
SECURITY context except that the provided security violations are
generated by the controlling MCS rather than the MCP. These security
violations are usually applicable for individual users and will also document
what action was taken by the MCS after the violation has occurered e.g. the
station was cleared, saved etc.

As with earlier examples, the following programs can be used to record all
MCS security violations, in real-time, if desired, to the
RECORDER/HOTLINE programs. In this case, RECORD subfile 11 has
been used.

DEFINE + SITUATION LOG_MCSSEC(MCSSECURITY):
 TRUE

DEFINE + ODTSEQUENCE LOG_MCSSEC(MCSSECURITY):
 RECORD[11]("MCS SECURITY VIOLATION",,LOGMIXNO);
 RECORD[11](" " 9,MCS_ERRORTEXT,," CODE: ",MCS_ERRORCODE);
 RECORD[11](" " 9,"ORIGINATING LSN:",LSN,,STATIONNAME);
 RECORD[11](" " 9,"USERCODE :",USERCODE);
 RECORD[11](" " 9,"ERROR ITEM :",INPUT);

The MCS_ERRORTEXT attribute is unusual for an OPAL attribute in that
it will return a textual description of the encountered security violation. For
example:

STIRLING1 12:25:48 MCS SECURITY VIOLATION 4098
STIRLING1 12:25:48 Invalid accesscode/password at log-on CODE: 5
STIRLING1 12:25:48 ORIGINATING LSN: 45 ET21/CANDE/1
STIRLING1 12:25:48 USERCODE: META
STIRLING1 12:25:48 ERROR ITEM: META

DATABASE context

The DATABASE context refers to all application database open and close log
records (Major type 1, Minor types 19 and 20 for open and close
respectively). Note that this only applies at the application level, i.e. each
time a program performs a programmatic database open or close then the
MCP will log these records. If you wish to track database start and
termination, then its BOJ and EOJ should be tracked by the LOGBOJ and
LOGEOJ contexts respectively.

There are two valid subcontexts for the DATABASE context, called OPEN
and CLOSE, controlling the filtering of database open or close log records. If
no subcontext is provided, then both record types will be tracked and
attributes are valid for both types. The integer attribute OPENTYPE can be
used to differentiate between them (OPENTYPE=DBOPEN for OPEN
records and OPENTYPE=DBCLOSE for CLOSE records).

TT DEFINE + SITUATION DBOPEN_ONLY(DATABASE=OPEN):

TT DEFINE + SITUATION DBCLOSE_ONLY(DATABASE=CLOSE):

The information accessible via a DATABASE context is essentially that
returned by a LOGANALYZER run, using the DATABASE modifier, and has
useful information that can be extracted. The name of the database, the
name of the invoking program and its usercode or accesscode are
particularly interesting in tracking database access.

DEFINE + SITUATION LOG_DATABASE(DATABASE=OPEN):
 DBNAME INCL "METATAPELIB"

DEFINE + ODTSEQUENCE LOG_DATABASE(DATABASE):
 RECORD[7]("OPEN OF ",DBNAME,"(",DBMIXNO,")" DETECTED")
 RECORD[7]("TASK NO:",LOGMIXNO,,"NAME : ",NAME);
 RECORD[7]("PROG INTNAME : ",INTNAME);
 RECORD[7]("USER: ",USERCODE,," ACCESSCODE: ",ACCESSCODE);

The SITUation filters out all database activity other than any those whose
name includes the partial string, "METATAPELIB" and only database open
records.

Example output:

STIRLING1 08:32:17 OPEN OF METATAPELIB (3029) DETECTED
STIRLING1 08:32:17 TASK NO: 4133 NAME: METALOGIC/OPALTAPELIB
STIRLING1 08:32:17 PROG INTNAME : TAPEDB
STIRLING1 08:32:17 USER: TAPELIB ACCESSCODE: LIBRARIAN

LOGEOJ context

Many Supervisor users will be well aware that a COMPLETED context
already exists for trapping EOJ and EOT events, so why have a log-based
alternative? The primary reason for this is that the set of attributes for a
COMPLETED context is significantly less than its log-based counterpart.
For example, normal EOJ resource statistics such as CPU time, I/O time,
core usage etc. cannot be retrieved by a COMPLETED OPAL program.

If the context name, LOGEOJ, is used on its own, both EOJ and EOT
records will be tracked by Supervisor. However, there are two subcontexts
which may be used to eliminate either EOJ or EOT if desired. For example:

TT DEFINE + SITUATION EOT_ONLY(LOGEOJ=EOT):

TT DEFINE + SITUATION EOJ_ONLY(LOGEOJ=EOJ):

The TT HELP ATT =:LOGEOJ and TT HELP ATT =:COMPLETED
commands can be used to see the differences between the two attribute
subsets. The LOGEOJ context supports all of the COMPLETED context
attributes except for the following:

JOBMESSAGES, OPTION, OPTIONS and STOPPOINT subset

The above attributes are considered to be of trivial importance and will not
be supported in the newer LOGEOJ implementation.

In the following example, the

DEFINE + SITUATION LOGEOJ(LOGEOJ):
 USER = "META" AND ACCESSCODE ="TEST"

DEFINE + ODTSEQUENCE LOGEOJ(LOGEOJ):
 RECORD[8]("Jobno : ",JOBNUMBER 17,, "Taskno : ",MIXNUMBER);
 RECORD[8]("Name : ",NAME 40);
 RECORD[8]("Usercode : ",USERCODE 17,,
 "Accesscode: ",ACCESSCODE 17);
 RECORD[8]("Cards read: ",CARDSREAD 17,,"Lines : ",LINESPRINTED);
 RECORD[8]("Elapsed : ",TIME(ELAPSEDTIME) 17,,
 "EOJ type : ",EOJTYPE);
 RECORD[8]("Init pbit : ",INITIALPBITS 17,,
 "I/O time : ",TIME(IOTIME));
 RECORD[8]("Queue : ",QUEUE 17,, "SourceMCS :",SOURCEMCSNO);
 RECORD[8]("Starttime: ",TIME(STARTTIME) 17,,
 "Startdate :",DATETOTEXT(STARTTIMEDAY,DDMMYYYY));
 RECORD[8]("Max ASDs : ",MAXASDS 17,, "Chargecode: ",CHARGECODE);

A typical example of the output from the above RECORD statements might
appear on a HOTLINE station as follows:

STIRLING1 09:27:11 Jobno : 1234 Taskno : 1235
STIRLING1 09:27:11 Name : *SYSTEM/DCALGOL
STIRLING1 09:27:11 Usercode : META Accesscode: TEST
STIRLING1 09:27:11 Cards read: 280 Lines : 3026
STIRLING1 09:27:11 Elapsed : 00:28:14 EOJ type : NORMALEOTV
STIRLING1 09:27:11 Init pbit : 549 I/O time : 00:00:44
STIRLING1 09:27:11 Queue : 9 SourceMCS : 4
STIRLING1 09:27:11 Starttime : 14:45:55 Startdate : 05/09/1996
STIRLING1 09:27:11 Max ASDs : 210 Chargecode: MYCHARGE

Note the use of the TIME and DATETOTEXT functions to convert raw time
and date values into a more meaningful format. The EOJTYPE attribute
returns a mnemonic value indicating information about the tasks
termination i.e. whether it was terminated normally or abnormally by
operator, system or programmatic reasons. In the above case, the value is
NORMALEOTV which indicates, unsurprisingly, that this was a normal
EOJ. Abnormal terminationswill usually return DSEDV or STEDV values
and, in these cases, the EOJCAUSE and EOJREASON attributes can be
used to provide additional information about the exact nature of the DSed
task.

LOGBOJ context

Similar to its sibling, LOGEOJ, the LOGBOJ context is now the preferred
context used to track beginning-of-task (BOT) and beginning-of-job (BOJ)
events on the system. As with LOGEOJ, the LOGEOJ context has several
distinct advantages over the old SITUation type of MX=BOT or MX=BOJ.
With a MX=BOJ SITUation, Supervisor handles BOT/BOJ events by
requesting mix information from the MCP using a standard GETSTATUS
interface. This MCP information call has a small overhead and is totally
reliant on the task being active at the time of the request. If the task is
NOT active, usually because it has already terminated, Supervisor will not
be able to correctly set up the appropriate MX attributes or the event may
even be discarded.

Indeed, if the system is very busy with lots of event activity and Supervisor
is running a large number of WHENs, it is possible for BOJ notices to be lost
even though the task may have a reasonable elapsed time.

The LOGBOJ context totally avoids these problems; because the log record
already has the information it needs, the MCP information call is not
required and the user task need not be active at the time Supervisor is
processing the information.

However, one disadvantage does exist with the LOGBOJ context; the
attribute subset compared to the MX subset is much smaller. This is
because the information for a LOG BOJ record is very specific and there is
no provision for needing to know information about ASDSINUSE or
ACCUMIOTIME. Since the BOJ is only recording the instant that the job
starts, this sort of information would likely be zero.

DEFINE + SITUATION LOGBOJ(LOGBOJ):
 USER = "META" AND ACCESSCODE ="TEST"

DEFINE + ODTSEQUENCE LOGBOJ(LOGBOJ):
 RECORD[8]("Jobno : ",JOBNUMBER 17,, "Taskno : ",MIXNUMBER);
 RECORD[8]("Usercode : ",USERCODE 17,,
 "Accesscode: ",ACCESSCODE 17);
 RECORD[8]("Name : ",NAME 40);
 RECORD[8]("Queue : ",QUEUE 17,, "Sourcename: ",SOURCENAME);
 RECORD[8]("Chargecode: ",CHARGECODE);
 RECORD[8]("Family : ",VIA(TASK(MIXNO):FAMILY));
 RECORD[8]("Identity : ",VIA(TASK(MIXNO):IDENTITY));
 IF PPED THEN
 RECORD[8]("Task is a PRIVILEGED program");
 IF CPED THEN
 RECORD[8]("Task is a CONTROL program");

As with previous examples, the output might appear as on a HOTLINE
station as follows:

STIRLING1 19:26:34 Jobno : 1234 Taskno : 1235
STIRLING1 19:26:34 Name : *SYSTEM/DUMPALL
STIRLING1 19:26:34 Usercode : META Accesscode: TEST
STIRLING1 19:26:34 Queue : 9 Sourcename: ODT/CANDE/1
STIRLING1 19:26:34 Chargecode: MYCHARGE
STIRLING1 19:26:34 Family : PACK OTHERWISE DISK
STIRLING1 19:26:34 Identity : DUMPALL
STIRLING1 19:26:34 Task is a PRIVILEGED program
STIRLING1 19:26:34 Task is a CONTROL program

Note that in the above example, where inaccessible attributes might possibly
be needed (e.g. the MX attributes FAMILY and IDENTITY), the VIA function
can be used to extract this information from the MX context using the
reference attribute TASK. Reference attributes such as TASK, UNIT and
TAPEDB allow access to information in the MX, PER and TAPEDB contexts,
respectively, from any other OPAL program context.

LOGPS context

The LOGPS context allows retrieval of various system PrintS request event
information corresponding to Sumlog record Major type 1 and Minor types
11 (Print Request Created), 12 (Print Request Complete), 13 (Start Printing
File) and 14 (Finish Printing file). This context allows users to track the
creation and printing of PrintS requests in real-time allowing automatic
printing and modification of existing requests. These Minor types can be
individually selected using the following subcontexts:

TT DEFINE + SITUATION PS(LOGPS=CREATED): Minor type 11
TT DEFINE + SITUATION PS(LOGPS=COMPLETION): Minor type 12
TT DEFINE + SITUATION PS(LOGPS=STARTED): Minor type 13
TT DEFINE + SITUATION PS(LOGPS=PRINTED): Minor type 14

The CREATED subcontext refers to the initial creation of the print request
(i.e. the addition of the first print file into a new PrintS request). The
STARTED and PRINTED subcontexts indicate the progress of the physical
printing of the specified request. The COMPLETION phase refers to the
release of the request to the PrintS system; this is usually due to
PRINTSDISPOSITION enforcements. For example,
PRINTDISPOSITION=CLOSE causes a request to be 'complete' when a
program closes the print file whereas a setting of EOJ means that the
request, possibly holding multiple print files, will only be released once the
program has gone to end-of-job.

As with the other LOG contexts, LOGPS programs can be activated with the
WHEN command or used to scan one or more Sumlogs using EVAL. It
should be noted that the Supervisor PRINTS context, which is only
permitted with EVAL, does not access the Sumlog. Instead, PRINTS context
programs can be used to scan the current PrintS request queue (as seen in
the response to the ODT command PS SHOW).

In the following example, this SITUation is attempting to capture a request
completion notice for a specific job and usercode and then automatically
modify the FORMID and DESTINATION for subsequent printing.

TT DEFINE + SITUATION MYPS(LOGPS=COMPLETION):
 USERCODE EQL "META" AND JOBNAME INCL "FAMILYMANAGER" AND
 FORMID NEQ "SPECIAL"

TT DEFINE + ODTSEQENCE MYPS(LOGPS):
 ODT("PS MODIFY ",REQUESTNO, " FORMID = ""SPECIAL"",",

"DESTINATION = ""LP4""");
 ODT("PS FORCE ",REQUESTNO);

TT WHEN MYPS DO MYPS

MESSAGE context

The MESSAGE context is well-known to Supervisor users; indeed, this
context is often one of the primary reasons that customers buy the product
because of its effective and flexible handling of potentially critical systems
messages. Actually, MESSAGE is another LOG context capable of capturing
all system and display messages written to the SUMLOG (Major type 14).

Because MESSAGE is now a LOG context, this means that the EVAL
command can be used to search for specific messages in one or more
Sumlogs. See the section LOG contexts and the EVAL command for
more information

LOG context

The LOG context is the generic option. Its use allows the capture of all log
records as they are written to the SUMLOG by the system.

DEFINE + SITUATION LOG_VOL(LOG):
 LOGMAJOR=15 AND LOGMINOR=5

DEFINE + ODTSEQUENCE LOG_VOL(LOG):
 SHOW(LOGTEXT)

TT WHEN LOG_VOL DO LOG_VOL

The above SITUation would capture all SUMLOG records but discard all
records other than Log Volume entries (Majortype=15) and Tape Volume
Newfile (Minortype=5). The ODTSequence performs a SHOW of the
LOGTEXT attribute, which will return an exact LOGANALYZER
representation of the specified entry (as seen by the LOG VOLUMES
variant). This is not a cheap option; the capture of every log record by a
Supervisor WHEN on a busy system may be a significant overhead.

From Supervisor version 42.420.70, a means is available to avoid this
problem. LOG context SITUations can now take a numeric list as a
subcontext, allowing the user to associate a specific Major type and/or
multiple Minor types. For example, a SITUATion to detect LOG Major type
15 (Volume Status entry) would be:

TT DEFINE + SITUATION LOG_VOL(LOG=15):
 TRUE

However, this SITUation would capture all valid minor types 1, 2, 3, 4, 5, 12
and 13. If only minor types 5 was required

TT DEFINE + SITUATION LOG_VOL(LOG=15,5):
 TRUE

Only one Major type may be specified per SITUATION and it must be the
first number in the list. SUPERVISOR will check that any supplied Minor
types are valid. Adding other minor types is done by extending the list:

TT DEFINE + SITUATION LOG_VOL(LOG=15,5,3):

would additionally capture minor type 3 (Tape Volume Purged).

Note that the LOGTEXT attribute must be used to examine the content of
the LOG record returned; as stated earlier, this special string attribute
represents the data seen in a LOGANALYZER report for the particular
record. Also, the LOGDAY and LOGTIME attributes provide the time and
date that the log record was created on the system. The DATETOTEXT and

TIME functions are useful for converting these values into meaningful
values. For example:

DATETOTEXT(LOGDAY, MMDDYYYY) might return "12/01/1996"
TIME(LOGTIME) might return "10:22:36"

Quick guide to getting LOG context help

Some hints on how to get help for the LOG context implementation.

• Use the TT PRINT ATTRIBUTES command from a Supervisor window to
get a complete print-out of each attribute subset and the OPAL program
contexts to which they belong.

• Get information about all the attributes associated with an individual
context using the TT HELP ATTR =:<context> command:

TT HELP ATTR =:LOG
TT HELP ATTR =:SECURITY

• Check SUPERVISOR’s on-line help for the following commands:

TT HELP EVAL
TT HELP WHEN

• The EVAL command, in particular, has extensive syntax to allow access to
the current and offline SUMLOGs, with comprehensive date and time
support, plus flexible controls to limit searching.

• Pay particular attention to the generic LOG attributes (use TT HELP
ATTR =:LOG to see its attaribute subset). These may be used in any
other log context and can be used to trap information for every SUMLOG
record. In particualr, the LOGTEXT attribute returns a string which
simulates the output from the LOGANALYZER program. This means
that it is very easy to capture and interrogate log records which
currently do NOT have their own context.

• Load some example LOG Opals directly using the ENTER command from
a COMS Supervisor window.

ENTER DEF LOG= FROM OPALS/SUPERVISOR/EXAMPLES

• As usual, this file may be loaded from the Metalogic release tape, if it is
not already available. These simple OPAL programs give some idea on
how to use the various new contexts.

LOG contexts and the EVAL command

The EVAL command has been considerably enhanced to support the new
LOG contexts, though some of the new functionality is available for all
OPAL contexts. The revised syntax is shown below:

 EVAL <Situ >

 & DEBUG [<max evals>]

 <limits>

 DO <ODTSequence> [<max entries>]

 TEST

 DISPlay <DISPlay>

 Print

<limits>

 /1\ @ <datetime>

 TO <datetime>

 BEFORE <datetime> AFter <datetime>

 AFter <datetime>

 /1\ LOGNO <integer>

 TITLE <filetitle>

 /1\ MAXlogs <integer>

 /1\ JOB <integer>

 SESSION <integer>

 TASK

 MIX

<datetime>

 <time>

 <hh> : <mm> <dd/mm/yy>

 : <ss>

The extended syntax for the EVAL command is discussed in some detail over
the next few pages. Consider a simple SITUation and ODTSequence to
handle the scanning of Sumlogs for, say, BOJ and BOT records:

TT DEFINE + SITUATION BOJ_SCAN(LOGBOJ):
 USERCODE = "META" AND NAME INCL "SYSTEM"

TT DEFINE + ODTSEQUENCE BOJ_SCAN(LOGBOJ):
 SHOW(DATETOTEXT(LOGDAY,DDMMYY),,TIME(LOGTIME),,LOGTEXT);

TT EVAL BOJ_SCAN DO BOJ_SCAN

From a Supervisor window, typical output might be:

16/09/96 16:16:27 2154 *SYSTEM/DCALGOL
16/09/96 16:15:13 2152 *SYSTEM/PATCH
16/09/96 16:10:27 2149 *SYSTEM/XREFANALYZER
16/09/96 16:04:27 2130 *SYSTEM/DCALGOL
16/09/96 16:03:27 2122 *SYSTEM/DCALGOL
16/09/96 16:00:27 2118 *SYSTEM/DCALGOL

The above EVAL statement would scan the current *SYSTEM/SUMLOG file,
searching for all BOJ or BOT log records and applying the SITUation check
on each entry found. The LOGANALYZER utility has the ability to scan
individual SUMLOG files and to refine search parameters by allowing the
provision of start and end date/times. With the new EVAL syntax,
Supervisor now has the capability to provide this kind of filtering and
considerably more.

When the above EVAL command is invoked, Supervisor will allocate a slot to
the activity as normal but it also invokes a son task, called EVREADER:

METALOGIC/SUPERVISOR/EVREADER

which will remains active whilst the EVAL is running. This EVREADER
task is responsible for reading the SUMLOG file directly rather than
imposing a heavy overhead on the main Supervisor stack.

When multiple, sequential EVALs are invoked whose contexts are TAPEDB,
MSG or any of the LOG contexts, and the Supervisor option LOGMINIMAL is
set, a new SUPERVISOR process called:

METALOGIC/SUPERVISOR/EVREADER/SHARED

will be automatically invoked to help reduce the system overhead of these
activities. This process will remain in the mix for up to 15 minutes after its
last usage.

Controlling the number of EVALuations

This feature allows the user to halt an EVAL after processing a certain
number of evaluations. When specified using the <max evals> integer
field, the EVAL will be automatically stopped if the current maximum
number of evaluation exceeds the user limit. For LOG contexts, the default

maximum of evaluations for an EVAL command is 65535 otherwise it is
infinite. For example,

TT EVAL BOJ_SCAN [100] DO BOJ_SCAN

SUPERVISOR/BOJ_SCAN:RETURNED TRUE FOR 8 RECORDS:Maxevals limit reached

When the BOJ_SCAN has processed 100 BOJ records, the EVAL will stop.
Note that this does not necessarily mean that there were 100 entries into the
BOJ_SCAN ODTSequence.

This syntax is permitted for all SITUation types.

Controlling the number of ODTSequence entries

Similarly, the number of ODTSequence entries can be controlled using the
<max entries> integer field. This specifies the maximum number of
times the specified ODTSequence or DISPlay can be entered before the
WHEN slot is terminated. For LOG contexts, the default maximum of
evaluations for an EVAL command is 65535 otherwise it is infinite.

For example:

TT EVAL BOJ_SCAN DO BOJ_SCAN [5]

SUPERVISOR/BOJ_SCAN:RETURNED TRUE FOR 5 RECORDS:Maxdo limit reached

Here, the EVAL will stop once the ODTSequence has been entered five
times, regardless of the number of evaluations.

This syntax is permitted for all SITUation types.

Limits can be imposed on both if needed. For example:

TT EVAL BOJ_SCAN [100] DO BOJ_SCAN [5]

would stop the EVAL once 100 BOJs had been handled or if 5 BOJ records
passed the SITUation check and entered the ODTSequence, which ever
comes first.

Date and time controls

In general, the searching of SUMLOGs will be limited to the current system
SUMLOG (or that specified via the TITLE modifier) unless any of the
<datetime>, BEFORE, AFTER, MIX, TASK, SESSION or MAXLOGS
modifiers have been used. This section discusses the usage of the
<datetime> modifier in some detail.

This feature is very similar to that of LOGANALYZER except for several
important aspects. First, the provision of date and/or times is free-format; if
a start date is given you do not need to specify a start time or an end date or
time. Secondly, providing SUMLOG names which match the date and time
range is not necessary since Supervisor will automatically search the
system for the relevant files.

The value of the <dd/mm/yy> date field depends on the setting of the
USDATES option, which is controlled via the TT SO command. The <yy> field
may be 2- or 4-digit years. Seconds are permitted in the time specification
which may include ':' delimiters if desired. For example:

TT EVAL BOJ_SCAN [@11:00:02] DO BOJ_SCAN
TT EVAL BOJ_SCAN [@1100-1430] DO BOJ_SCAN
TT EVAL BOJ_SCAN [@14:30-11:30] DO BOJ_SCAN
TT EVAL BOJ_SCAN [@11:00 12/1/96] DO BOJ_SCAN
TT EVAL BOJ_SCAN [@BEFORE 11:00 AF 08:00] DO BOJ_SCAN
TT EVAL BOJ_SCAN [@BEFORE 11:00 12/1/96] DO BOJ_SCAN

If no date field is specified and any of the times specified are greater than
the current time, then yesterday's date will be assumed; otherwise today's
date will be used. Dates or times entered with "-" or "TO" are order
independent i.e. the lesser date/time of the range can be either first or last.

If a start date field only is provided then Supervisor will assume the end
date as being the current date and time.

Controlling access to SUMLOG files

When scanning for log record entries, previous SUMLOGs are automatically
searched if they are included in the given time range. Supervisor searches
for SUMLOG files on various locations according to the following
precedence:

• The family specified for the SUMLOG name given by the TITLE
modifier, if present.

• The family specified by the DL LOG command.

• The family specified by the TT USE FAMILY FOR LOGS command.

For example,

TT EVAL BOJ_SCAN[TITLE=*SUMLOG/6343/050196/000756 ON PACK @0900 5/1/96]
 DO BOJ_SCAN

The above entry would search the given SUMLOG for BOJ records from the
specified date and time up to the current date and time. Assuming that the
DL LOG family is DISK and the TT USE FAMILY FOR LOGS specification is
WORK, then Supervisor would initially search PACK for the specified
SUMLOG file. If found, the SUMLOG file is processed and PACK will again
be searched, if necessary, for other eligible logs. If the specified SUMLOG is
NOT found , then Supervisor will search DISK and then WORK. Again, if
no eligible SUMLOGs are found on PACK, the same two families will also be
scanned.

Supervisor requires that the SUMLOG files, wherever they might reside, to
have consecutive log sequence file numbers. If a missing file is encountered,
the EVAL will automatically stop.

The MAXLOGS modifier restricts the maximum number of SUMLOGs that
will be searched by Supervisor for the EVAL. If the MAXLOGS modifier is not
used then all available SUMLOG files are eligible for searching.

TT EVAL BOJ_SCAN{MAXLOGS=3 @0900 23/5/1996] DO BOJ_SCAN

In the above example, Supervisor would search the DL LOG family and USE
FAMILY FOR LOGS family for all SUMLOGs that have information for the
specified time range. However, in this case, only three SUMLOGs in total
will be searched starting with *SYSTEM/SUMLOG, which is always
accessed first. If the MAXLOGS limit is exceeded then the EVAL will be
terminated with the message similar to:

SUPERVISOR/BOJ_SCAN:RETURNED TRUE FOR 8 RECORDS:Maxlogs limit reached

It should be noted that SUMLOG titles must be consistent if they are to be
found automatically by Supervisor. These file tiles should have the following
standard format:

SUMLOG/<system serial no>/<mmddyy>/<log sequence no>

e.g. *SUMLOG/6343/120196/001235

When a TITLE modifier has been specified, any leading string may be in the
title before 'SUMLOG/' but all prior logs must have the same name
prefix. That is, if the specified SUMLOG was held under the directory
(META)MYSYSTEM/SUMLOG/…. then Supervisor will expect all other
eligible SUMLOG files to be held in similar directories. However,
Supervisor will always expect current log file to be entitled
*SYSTEM/SUMLOG, regardless of where other SUMLOGs may reside.

The <log sequence number> level in the number is a 6-digit internal file
sequence number maintained only by the MCP. Whenever the current
SUMLOG file is closed, either by a TL command or because it has been
automatically closed by the system due to its size, this sequence number is
incremented by 1.

BEFORE and AFTER controls

BEFORE and AFTER modifiers are alternative way of specifying start and end
date/time ranges. If you remember that EVALs always read the SUMLOG
backwards, a BEFORE date/ time specification will become the start time for
the scan. This starting point is found by opening the first SUMLOG file
specified, or the current system SUMLOG. If this SUMLOG's starting
date/time is prior to the BEFORE time, the next most recent SUMLOG is
searched for and checked. This process will continues until the correct
SUMLOG file is found or all the available SUMLOGs file have been
exhausted.

When the relevant SUMLOG is found, a binary search is employed to locate
the last record whose time (truncated to the nearest second) that is less than
or equal to the specified BEFORE time.

Log records are then searched, looking for the specified Major and Minor log
types (as given by the context of the SITUation), until a record is found
whose timestamp is prior to that provided by the AFTER modifier. At this
point, the EVAL will terminate. If no

It should be noted that any date and time changes in any of the scanned
SUMLOG files will be ignored. Also, an arbitrary time of 59 seconds is given

to a BEFORE time where the seconds field is absent. This allows the EVAL to
include the scanning of all log records that "belong" to that minute.

Some examples:

TT EVAL BOJ_SCAN[@BEFORE 11:00 12/8/96] DO BOJ_SCAN
TT EVAL BOJ_SCAN[@BEFORE 1400 13/8/96 AF 1300 11/8/96] DO BOJ_SCAN

In the first example, Supervisor will search for the first SUMLOG, starting
with the current system SUMLOG, which has the records for 11:00am on the
12th August 1996. Once this date/time is found, Supervisor will scan
backwards from that time traversing other SUMLOGs that are available on
the system, stopping only when the there are no more SUMLOGs available
or MAXLOGS has been exceeded.

Using task numbers for search controls

MIX, JOB, TASK and SESSion selection is also permitted in the specification
of EVAL limits as a means of controlling the searching of SUMLOGs.
Starting from the current system SUMLOG file, Supervisor will search all
log records, passing relevant entries to the SITUation, but stops as soon as a
BOJ, BOT or session log record is found that matches the selection provided.

If a mix number range is provided then this behaves in a similar way to the
BEFORE and AFTER modifiers; Supervisor will use the higher mixnumber in
the range as a BEFORE modifier and the lower value will behave as an AFTER
specification.

For example:

TT EVAL BOJ_SCAN [MIX 3133] DO BOJ_SCAN
TT EVAL BOJ_SCAN [MIX 3133-3158] DO BOJ_SCAN

In the first example, Supervisor will scan back from the end of the current
SUMLOG searching for a BOJ/BOT or session entry matching mix number
3133. As soon as this record is seen, the EVAL will terminate. In the second
example, Supervisor will begin analysing log records as soon as a BOJ entry
is seen for mix number 3158, scanning back through the log from this point
as normal. If a task entry for mix number 3133 is subsequently
encountered, the EVAL will then terminate normally.

Interrogating and stopping EVALs

For very long EVAL requests that may search multiple SUMLOGs,
Supervisor is able to interrogate the current status using the EVAL
command. Each EVALREADER task that is running has special in-built
pacing code that releases control of the CPU after reading 50 log records.
This mechanism allows the main Supervisor stack to regain control at
regular intervals (along with other active tasks).

TT EV BOJ_SCAN [4000 @1100 12/9/96] DO BOJ_SCAN

TT EV ? BOJ=

 ----- SUPERVISOR WHEN STATUS (LIMIT = 40, ACTIVE = 14) -----
W 067 3181 EVAL BOJ DO BOJ RUNNING 014
 TIMES:CPU=00:00:02,IO=00:00:00,ET=00:00:13
 201 evals Limit 4000 After 11:00 12/09/96 @ 16:24:01 17/09/96
 (90% of #000787), 4 ODTS entries

In the above example, the EVAL has been presented with a limit of 4000
evaluations and a finishing time of 11:00am on the 12th September 1996. In
the interrogation shown above the BOJ_SCAN EVAL has processed 201
BOJ/BOT log records and is currently at 16:24 on the 17th September.
SUMLOG log sequence number 000787 is currently being processed and
90% of that file has been processed. Only 4 entries to the ODTSequence
have been processed.

TT EV BOJ_SCAN [1000 @BEFORE 12:00 15/9/96] DO BOJ_SCAN

TT EV ? BOJ=

 ----- SUPERVISOR WHEN STATUS (LIMIT = 40, ACTIVE = 14) -----
W 067 3183 EVAL BOJ DO BOJ RUNNING 014
 TIMES:CPU=00:00:04,IO=00:00:00,ET=00:00:20
 401 evals Limit 1000 Before 12:00 15/09/96 @ 14:19:07 14/09/96
 (17% of #000785), 6 ODTS entries

Here, the EVAL uses a BEFORE modifier to set up a start date/time control
but this time a default evaluation limit of 1000 has been assigned.

Any LOG context EVAL can be terminated in the usual manner whilst
processing SUMLOG file records:

TT EVAL BOJ_SCAN DO

On occasion, it may take some time Supervisor to honour a termination
request especially if there is a large number of messages, generated by the
EVAL, are queued to the originating station. In such cases, the
EVALREADER process may have terminated normally, having processed all

relevant SUMLOG files, by the time Supervisor gets the opportunity to
process the deactivation request.

LOG contexts and the WHEN command

The WHEN command has been similarly enhanced to limit the number of
evaluations and ODTSequence/DISPlay entries:

 WHEN <situ>

 ONCE & DEBUG [<max evals>]

 DO <odts>

 TEST [<max entries>] <delay>

 DISPLAY <disp>

 PRint

<delay>

 DELAY <integer>

 SECONDS

The <max evals> and <max entries> modifiers have already been
discussed in the previous section and for the WHEN command, the effects are
identical. The WHEN will automatically be stopped when either of the limits
are exceeded.

By default, there are no practical limits on number of evaluations and
ODTSequence entries that a WHEN may perform. All other modifiers
permissable for EVAL are not allowed with the WHEN command.

Useful information about LOG contexts

As with the TRIM component of Supervisor, LOG contexts is protected by a
software license key. If this key has expired or does not exist, any attempt
to DEFINE or execute a LOG context OPAL program will return the error
message:

NEED LOGCON KEY

In such cases, you should contact your nearest Metalogic site for further
support.

When the Supervisor options, LOGMINIMAL and MONITORING, are set and
reset respectively, Supervisor will set the FILEACCOUNTING task
attribute to ANONYMOUS for the following tasks:

CONTROLCARD
EVREADER
FILEDATA
LOGANALYZER
CHECKWFL

These settings can significantly reduce some of the system overheads in
accessing various SUMLOG files. Note that the ODT ACCOUNTING
command must be set as follows:

ACCOUNTING FILE = UNSPECIFIED

Using HOTLINE and RECORDER

Although SUPERVISOR makes the best use of standard A Series resources
for reporting (messages to system consoles or REMOTESPOs, log entries,
printouts), there are times when it may be desirable to stream information
to one or more user-specified destinations in a customised format. To this
end, METALOGIC have implemented the HOTLINE and RECORDER
mechanisms.

Within an OPAL program, it is possible, by use of the RECORD verb, to
direct output to a specific disk file. In addition, the information can be
directed to a BNA Port File interface. This means, for example, that critical
system events can be detected and alert messages directed through BNA
Port Files to a non-A Series environment. Some SUPERVISOR users have
implemented automatic operator alert systems using this mechanism to
redirect OPAL output to IBM PC/Windows-type environments; others have
linked into paging systems so voice messages can be generated and
telephoned to off-site personnel.

METALOGIC provides sample, usable RECORDER and HOTLINE
programs in source form on the software release tape. The purpose of this
section is to document the user interface to the HOTLINE program, and give
guidelines for customizing both programs.

<RECORD Statement>

The OPAL verb RECORD passes a string from an ODTSequence to a
program called the RECORDER, generally for the purpose of logging some
condition to a disk file or passing information to a HOTLINE program.
RECORDER and HOTLINE are designed to be user-customizable. The
following describes the action of RECORD if used with the standard
RECORDER and HOTLINE programs. All these actions can be customized.

Refer to the OPAL Programming Reference Manual for more details on
the RECORD statement.

 RECORD

 [<arithmetic expression>]

 (<OPAL string>)

Logging to a disk file

RECORDER creates up to six disk files, 0 through 5, at one time. To log to
files 1 through 5, enter the file number in brackets and the text to be logged
in parentheses. For example:

RECORD [3] (TIMEDATE(YYYYMMDDHHMMSS),,”User”,,USER,,
 “program”,,NAME,,”security violation (COMPSEC)”);

RECORDER does not automatically log either the time and date, or the
identification of the originating OPAL. Include these in the text (as shown
in the example) so that you can identify the messages. This is especially
important if several of your OPALs record to the same file number.

Logging to disk file 0

Use exactly the same OPAL to log to file 0 as to the other files, but with the
file number = 0. However, RECORDER treats file 0 specially. An extra line
showing the time of day and identifying the originating OPAL will be added
by RECORDER. The BLOCKSIZE of the file will be 450. The file will be
closed after each log entry. If the log string begins with “QUIT”,
RECORDER will go to EOT after logging the entry.

Description of the files created

The files are named *SUPERVISOR/RECORD/<dayname>/<filenumber>.
<dayname> is the day of the week that the file was created (MONDAY,
TUESDAY, etc.). The files are placed on the system DL BACKUP family.
New files are not automatically created at midnight. If you want new files
for each day – which is a good idea – then schedule an OPAL to run at
midnight every day which causes RECORDER to quit (see below).
SUPERVISOR will automatically re-initiate RECORDER, thereby creating
new files for each day.

The files are created as standard JOBSYMBOL files, except that for files 1
through 5, BLOCKSIZE=30. All files are opened with
PROTECTION=PROTECTED, which in combination with the blocksize and
a single buffer means that at most two records can be lost due to a system
failure. File 0 is created with MAXRECSIZE=450, but no records will be
lost, because the file is closed after each record is written.

Logging to disk file 11

A special case is recording to file number eleven (11) when RECORDER will
both send messages to HOTLINE and log them to a disk file. The file is not
named as described above but instead has the general form:

*SUPERVISOR/RECORD/<dayname>/HOTLINE

This allows a site to keep a record of messages sent to HOTLINE.

Causing RECORDER to quit

Sending a message starting with “QUIT” to file 0 will cause RECORDER to
quit. Supervisor will automatically re-initiate RECORDER the next time a
RECORD is executed. In normal operation, the only reason to do this is to
force RECORDER to create new files immediately after midnight (see
“Description of the files created”, above). For example:

TT DEF ODTS QUIT_RECORDER: RECORD [0] (“QUIT”);
TT AF 0000 DAILY:DO QUIT_RECORDER

Sending to the HOTLINE program

Use the same OPAL syntax as for logging to a disk file (see above). Use a
file number (here called a message class) of 6 to 47. RECORDER will send
the message to any HOTLINE program which has requested that class of
messages.

The supplied HOTLINE program can be run from any terminal. It asks the
operator what hosts, and what message classes, to monitor. The operator
can select message classes 6 through 9 singly, or can select all message
classes (6 through 47). HOTLINE then connects to the RECORDER
program on the selected hosts and requests the selected message classes.
Upon receiving the messages from RECORDER, it writes the messages to
the terminal.

If no HOTLINE program is currently requesting the message class, the
message is discarded. If the message class is invalid, the message is
discarded.

Messages displayed by HOTLINE include time and host identification. If
you need to identify the specific source OPAL, you should write the
RECORD statement to include this information.

Operating the HOTLINE program

Operating the HOTLINE program is a simple matter of running the
program and answering a couple of questions. From CANDE, enter

RUN *METALOGIC/SUPERVISOR/HOTLINE

HOTLINE will ask whether you want all messages, or just one class. After
you answer, it will ask you which BNA hosts you want to monitor. You need
not enter the local host name; the local host is always monitored. Enter the
names of any other hosts you want to monitor, one name per transmission.
Then transmit ?END.

HOTLINE will then enter monitoring mode, displaying each message on
your terminal as the message arrives. Enter ?HI2 at any time to receive a
status report on currently connected hosts. Enter ?HI1 to terminate
HOTLINE.

Multiple copies of the HOTLINE program can be running at the same time,
either on the same host or on different hosts. If more than one copy of
HOTLINE requests the same message class, all copies of HOTLINE receive
copies of all messages in that message class.

